From a calm puddie to a stormy ocean - Rendering water in Uncharted

Carlos Gonzalez-Ochoa *

Introduction

The Uncharted series of video games for the PS3 have been rec-
ognized by their distinct cinematic gaming experience and high
quality graphics. Although the core game mechanics are centered
around exploration and combat; and less on water game play, water
has still been a major design element of the game. The complex-
ity of the game mechanics and rendering of the water has increased
over the three games in the series. The range of water types goes
from simple puddles, pools to lakes and rivers, and, finally an ocean
storm environment. The games art style is realistic, but not fully
photo-realistic and the water rendering has to match the style. Our
water shader uses general optical principles but adds artistic con-
trols to realize the style of the game. One of the biggest challenges
we solved was processing and rendering water with dramatic move-
ment and striking shading while using a small portion of the avail-
able resources (memory, SPU and GPU). The water system runs
in parallel with other game systems and everything is running at
30 fps. In Uncharted 3, the water system was used to drive a cruise
ship, in which the whole level resided and thus became a central ele-
ment of the gameplay. The water would drive the cruise-ship which
in turn moves the player, enemies, effects and physics objects. In
addition there were levels with swimming in rough water, flood-
ing water, crashing waves and floating platforms that had their own
technological challenges. Our engine uses different render engines
depending on the type of water. All of these engines are procedural
systems and, because of the game design, not one uses real-time
physics simulations. One renders non-LOD meshes with calm and
semi-moving water bodies (rivers, lakes, and puddles), another uses
a hierarchical LOD system with displacement for open bodies of
water, like the ocean, and the last uses a skinning mechanism with
particles for the flooding events.

Shader

To achieve a stylized look for the water we use a complex shader
with multiple controls of refraction, reflection, foam and a depth
based effect (called churn) to give the water a volumetric effect.
The most important feature is flow, which gives a distinct water
movement. The movement is created by advecting the triangle’s
or pixels uv coordinates of the normal maps [1996]. We blend
two or more normal maps, that are offset in phase, resulting in a
continuous movement effect. A surface wide vector field is used to
define the local direction of flow (per triangle or pixel), we also use
other maps to determine displacement magnitude, bump strength,
foam placement and other properties. A feature of real life rivers
that we wanted to achieve are stationary or semi-stationary waves,
which are different from the rolling, curling waves of oceans. For
such, we displace vertices in a circular motion on a vertical plane
parallel to the flow direction. The vertices are animated in SPU
processes before they are sent to the GPU for rendering.

Open Ocean rendering

The ocean is rendered as a mesh using a hierarchical LOD system
using an alternate scheme of Geometric Clipmaps [2004]. The
mesh is composed as a series of concentric rings of polygons cen-
tered from a point of interest close to the camera center; and each
ring has successively coarser resolutions. Our scheme differs by
how each ring is divided into different sized patches. This improves

*cgonzoo@gmail.com, doug @dougvfx.com, supereben@gmail.com

Copyright is held by the author / owner(s).
SIGGRAPH 2012, Los Angeles, California, August 5 — 9, 2012.
ISBN 978-1-4503-1435-0/12/0008

Doug Holder
Naughty Dog, Inc

Eben Cook

culling and visibility, balance SPU job loads and guarantees conti-
nuity and blending across ring levels to avoid T-junctions. Each ver-
tex of the clipmap will later be displaced using a procedural wave
system. The displacement acts in every direction not only in the
vertical so we can achieve sharper wave peaks. The LOD gener-
ation and wave displacement is completely procedural and runs in
several SPUs in parallel. The system is procedural, parametric and
deterministic. It can be used to generate the renderable mesh or to
drive game objects.

To simulate the wave motion of an open ocean we generate a field
of wave particles [2007]. This method was chosen instead of the
well-known FFT or procedural noise methods, because it provided
more intuitive controls to artists, didnt exhibit any tiling artifacts at
low grid resolutions and was simple to optimize in the SPU. We add
low frequency time modulated Gerstner waves to define a general
look and use an extruded NURBS curve profile to create specific
wave shapes. In addition, the motion of the waves displacement
drives the flow and foam shader parameters. For collision queries
(point and ray tracing) we dont perform tests against the rendered
mesh, but instead use a search method on the displacement field,
which gives faster and more accurate results. We compose the final
wave displacement as a composition simpler waves and displace-
ment grids. Our artists can add several grids at different scales to
create octaves and create wave detail at different frequencies. These
controls are flexible and intuitive for artists to use and expresive
enough to create a calm swimming pool to a stormy ocean.

Flood

For the flooding events, we used a combination of skinned meshes
driven by the result of an offline simulation and artfully placed par-
ticle effects. The moving water was simulated offline to generate a
high resolution mesh. From it a series of lower resolution animated
meshes were created using a shrink-wrapping tool that was custom
built in Houdini. The resulting meshes were guaranteed to have a
defined vertex count that could be animated in the game engine at
run-time. The simulation was also used by the artists as a guide for
the placement and timing of particles. To limit overdraw particles
are rendered in half-screen buffers.

References

LosAsso, F., AND HOPPE, H. 2004. Geometry clipmaps: Terrain
rendering using nested regular grids.

MAX, N., AND BECKER, B. 1996. Flow visualization using mov-
ing textures.

YUKSEL, C., HOUSE, D. H., AND KEYSER, J. 2007. Wave parti-
cles.



